Least-to-most prompting

Least-to-most prompting 籍由將大任務分細子任務,讓大型語言模型可以處理較複雜的大任務。使用Least-to-most prompting 包含兩個階段:

  1. Decomposition.
    • The prompt in this stage contains constant examples that demonstrate the decomposition, followed by the specific question to be decomposed.
  2. Subproblem solving.
    • The prompt in this stage consists of three parts:
      • (1) constant examples demonstrating how subproblems are solved;
      • (2) a potentially empty list of previously answered subquestions and generated solutions, and
      • (3) the question to be answered next.

example

有一個小山坡,小明爬上去需要花4分鐘,爬下來需要花1分鐘。15分鐘內,小明可以爬上再爬下來回幾次?

  1. Decomposition
    • "有一個小山坡,小明爬上去需要花4分鐘,爬下來需要花1分鐘。15分鐘內,小明可以爬上再爬下來回幾次?" 該怎麼解決這個問題?

  2. Subproblem solving
    • 包含子問題
      • "有一個小山坡,小明爬上去需要花4分鐘,爬下來需要花1分鐘。15分鐘內,小明可以爬上再爬下來回幾次?" Q: 爬上爬下一趙花多少時間?

    • 將子問題的答案附上,再進一步提問
      • "有一個小山坡,小明爬上去需要花4分鐘,爬下來需要花1分鐘。15分鐘內,小明可以爬上再爬下來回幾次?" Q: 爬上爬下一趙花多少時間? A : 爬上爬下一趟要花5分鐘 Q: 那麼15分鐘內可以爬上爬下來回幾次?

References

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., ... & Chi, E. (2022). Least-to-most prompting enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625.